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DESIGN MODELS 

 

 

Design models accommodate qualitative, categorical variables. We typically refer to these as 

models of analysis of variance. However, in the GLM framework, these qualitative variables 

(categories with no numeric value) are considered factors. But, there is some utility in 

considering these models as design models for our purpose, to understand the role of a design 

matrix and consider the possible operations of design matrix in matrix algebra. 

 

Consider a model for three means, 1y , 2y , and 3y . The mean for group 1 (perhaps school 1) can 

be considered to be a function of the grand mean (μ, the population mean), plus the unique effect 

of group 1 (α
1
) and the residual for group 1 (e

1
). 

 

 111 ey   

222 ey   

333 ey    iii ey   

 

The general form of these models for the three means can be combined into: 

 

i332211i exxxy   

 

And the three models can be represented in design matrix notation as a set of indicators for the 

group membership as: 

 

1y  = 1 1 0 0 

2y  = 1 0 1 0 

3y  = 1 0 0 1 

 

Notice the first column represents the grand mean (constant or intercept), and each subsequent 

column represents a corresponding group membership, where an individual is in group 1, group 

2, or group 3. Each row (for a group mean) can be read as: The group 1 mean is a function of the 

grand mean (coded as 1) and membership in group 1 (coded as 1) and not being a member of 

group 2 (coded as 0) or group 3 (coded as 0). 

 

The full matrix notation to represent this system of equations should be familiar to you: 
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 y  = X  + e   where X is the design matrix 
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We need to solve for α group effects from the equation 

 

y  = X  + e 

 

Remember we need to be able to take the inverse of X but it is not square. So we use the method 

we found in regression and we can solve for the group effects, the α values, as: 

 

̂  = (XX)
-1

 Xy.  

 

This is exactly the same function we use to solve for the betas in regression. 

 

Take a close look at the design matrix: 
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There is linear dependence in the columns. Notice, column 1 = column 2 + column 3 + column 4. 

Our X is singular. 
 

In this case, ̂   (XX)
-1

 Xy since |XX| = 0 

 

In all design models, |XX| = 0; design models are of deficient rank. 
 

To solve this problem, we need to “reparameterize” the design matrix. 
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Example: 

 

  :  Type of Twins 

  Monozygotic Dizygotic 

:  Gender Male 
11y  12y  

 Female 
21y  22y  

 

Here we have a model with two factors, gender and type of twins. There is some unknown 

dependent variable (maybe achievement or personality measure). 

 

This is an additive main class model; containing only main effects. Notice the design matrix 

contains the constant or grand mean and then the four combinations of gender and type of twin. 
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y  = A  + e  

 

This is the typical representation of such models, where  (ksi) is the parameter vector. Since A 
is of deficient rank, we cannot invert the matrix to solve the equations. 

 

We can reparameterize the model to solve the deficiency problem. 
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Which suggests that i = 0 & i = 0; ANOVA assumptions. The sum of the gender effects and 
the sum of the twin-type effects both are zero. That means once we estimate the effect of being 

male, we don’t need to estimate the effect of being female because it is redundant, since they 

sum to zero. 

 

So by augmenting the design matrix with these two equations, we do not change the results of 

the original model – we only add a constraint on the group effects; that they sum to zero. This is 

NECESSARY to make the matrix positive definite. 
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This results in: 
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Notice there is a new symbol, … , which denotes augmentation of a vector or a matrix, like 

appending two matrices together. Now we have a solution for  (the parameter vector, which 

hasn’t changed). We can now solve for the parameters of the model. Notice we have the same 

result. Let’s call the augmented matrix AD; so we have: AD-transpose AD inverse, AD-

transpose y. 
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This may not be the “best” solution because the introduction of 0 is arbitrary, although this is the 

classical ANOVA method. 

 

 

The ideal method of reparameterization involves careful selection of the augmenting matrix.  

This allows us to test other parameters simultaneously as a component of the design. There is 

great benefit to considering how to parameterize the design matrix, because we can build in a 

priori contrasts or other interesting statistical hypotheses. The alternative is to test for interesting 

group differences through post-hoc comparisons, which has the tendency to increase Type-I error 

rates, since there are multiple tests being conducted as though they are independent. If we build 

them into the design matrix, we can do these more formally through a priori or planned 

statistical testing, which is more of a confirmatory approach, rather than exploratory and ad hoc. 

 

Consider our original design model, where the design matrix is A and the parameter vector is . 

This can be generalized to the case of n (number of unique groups)  m (number of parameters): 
 

y  = A  + e   with dimensions:  (n1) = (nm)(m1)+(n1), where n = # of cells in design 

 

 

Let A (nm) be of rank l, where l  m. 
 

This is deficient rank because in the design matrix, there will always be linear dependence as a 

function of the grand-mean. 

 

Now we can define an augmentation matrix L. 
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Let L be of rank l and linearly independent on rows of A. 
 

Rank 

















L

A

  = Rank (A) = Rank (L) = l  

 

The key to the whole process is choosing L. We can choose L based on research hypotheses (a 

priori contrasts among groups). The best reparameterization for solving equations involving a 

design matrix includes a set of a priori contrasts. 

 

 

Consider a one-way design (one factor) with 4-levels (four groups): 
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Examples of many possible Ls includes the following: 
 

Simple Contrasts: L = 
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The first row provides the grand mean (since the sum of the group effects is zero); the other three 

simple contrasts compare each group to group 4. 
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Helmert contrasts are also orthogonal contrasts. 

 

You can also create contrasts to assess your own specific research comparisons or a priori 

comparisons. 


